

2,3-DIHYDROJABOROSALACTONE A, A WITHANOLIDE FROM *ACNISTUS BREVIFLORUS*

ADRIANA S. VELEIRO, GERARDO BURTON and EDUARDO G. GROS

Departamento de Química Orgánica y UMYMFOR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab 2, Ciudad Universitaria, 1428 Buenos Aires, Argentina

(Received 30 July 1984)

Key Word Index—*Acnistus breviflorus*; Solanaceae; withanolide; 2,3-dihydrojaborosalactone A; 5 α -methoxy-4,5-dihydrojaborosalactone B; 5 α -ethoxy-4,5-dihydrojaborosalactone B.

Abstract—From *Acnistus breviflorus* the new 27-hydroxy-5 β ,6 β -epoxy-1-oxo-(22R)-witha-24-enolide (2,3-dihydrojaborosalactone A) as well as seven known withanolides, withaferin A, 2,3-dihydrowithaferin A, 6 α -chloro-5 β -hydroxywithaferin A, 5,6-deoxywithaferin A, jaborosalactone A, jaborosalactone D and jaborosalactone E were isolated and characterized by means of spectroscopic (1 H NMR, 13 C NMR and mass spectral) methods. Depending on the extraction solvent (methanol or ethanol), a known artifact (3 β -methoxy-2,3-dihydrowithaferin A) and the new 5 α -methoxy-4,5-dihydrojaborosalactone B and 5 α -ethoxy-4,5-dihydrojaborosalactone B were also isolated and characterized.

INTRODUCTION

Previous studies carried out on *Acnistus breviflorus* (Griseb.) have shown that this plant contains different withanolides depending on its origin. Thus, Nittala and Lavie [1] have found only withanolides containing an OH-4 group in plants growing in Israel while we have found, in addition, several jaborosalactones in plants growing in Argentina [2, 3].

We wish to report that from extracts of *A. breviflorus* collected in Tucumán (Argentina), we have isolated a new withanolide identified as 27-hydroxy-5 β ,6 β -epoxy-1-oxo-(22R)-witha-24-enolide (2,3-dihydrojaborosalactone A, 1a) besides seven known withanolides that were identified as withaferin A (3b), 2,3-dihydrowithaferin A (1b), 6 α -chloro-5 β -hydroxywithaferin A (6), 5,6-deoxywithaferin A (4) [1], jaborosalactone A (3a) [4, 5], jaborosalactone D (2b) [6] and jaborosalactone E (2a) [6]. Moreover, three artifacts were also obtained depending on whether the initial extraction was performed with methanol or ethanol; the former solvent gave the known 3 β -methoxy-2,3-dihydrowithaferin A (5) [7, 8] and a new compound, identified as 5 α -methoxy-4,5-dihydrojaborosalactone B (2c), while the latter solvent afforded a hitherto unknown product that was characterized as 5 α -ethoxy-4,5-dihydrojaborosalactone B (2d).

RESULTS AND DISCUSSION

The concentrated methanolic extract from *A. breviflorus* was diluted with water and extracted with petrol and with ethyl ether. The latter extract was chromatographed on silica gel affording crude fractions of the main withanolides, i.e. withaferin A and jaborosalactones A, D and E as previously described [3]. The intermediate chromatographic fractions contained mixtures that were further separated by prep. RP-HPLC, as described elsewhere [9]. Compound 1a had a slightly smaller *R*, than jaborosalactone A. The structure of 1a was established as

2,3-dihydrojaborosalactone A based on the following spectroscopic evidence. The 13 C NMR spectrum (Table 1) showed two carbonyl carbons plus two additional sp^2 carbons. These two carbons and one of the carbonyl carbons corresponded to the unsaturated δ -lactone ring. The second carbonyl was assigned to the keto group at C-1 which, in the absence of the 2,3-double bond, resonates *ca* δ 9 to lower field than the C-1 of jaborosalactone A. The rest of the spectrum presented only small differences with that of jaborosalactone A (Table 1). The 1 H NMR spectrum of 1a (Table 2) did not present olefinic protons but, otherwise, it was very similar to that of jaborosalactone A [5]. The mass spectrum of 1a showed the molecular ion at *m/z* 456 and fragments at *m/z* 153 and 140 which were attributed to ring A plus C-6, C-7 and C-19, and C-6 and C-19, respectively [5]. The proposed structure was confirmed by selective hydrogenation of the 2,3-double bond of jaborosalactone A which afforded a product identical to natural 1a.

Compound 2c presented in the mass spectrum a molecular ion at *m/z* 486 and fragments at *m/z* 468 [$M - 18$] $^+$, 454 [$M - 32$] $^+$ and 436 [$M - 18 - 32$] $^+$ indicating a methoxylated withanolide derivative. The 13 C NMR spectrum was very similar to that of jaborosalactone D (Table 1) except for the resonances of C-4-C-6 and the presence of an extra signal at δ 49.7 which was assigned to the methoxyl carbon at C-5. This carbon showed the typical deshielding (*ca* δ 4) due to methylation of the OH-5 group. The low chemical shift value observed for this methyl group may be explained by a spatial influence by ring A. This finding is of particular interest since magnetic anisotropy of vicinal groups rarely affects 13 C NMR chemical shifts. The 1 H NMR spectrum was also very similar to that of jaborosalactone D [6] except for the extra resonance at δ 3.02 of the shielded methoxyl protons. Hence, compound 2c was identified as 5 α -methoxy-4,5-dihydrojaborosalactone B. Treatment of jaborosalactone A (3a) with methanol-sulphuric acid afforded a product

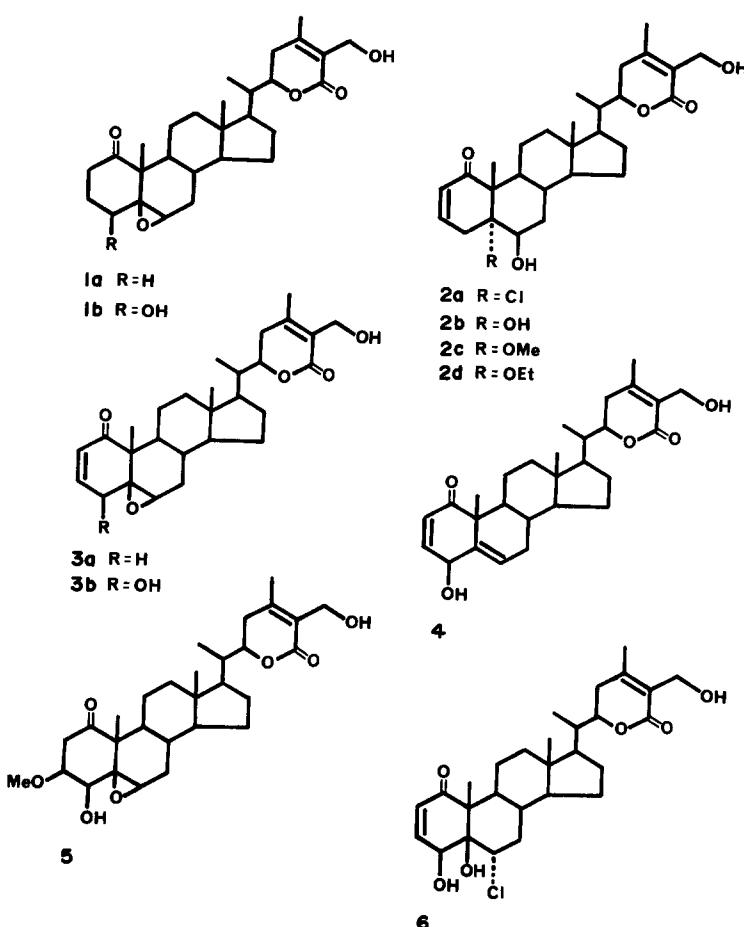


Table 2. ^1H NMR spectral data of compounds **1a**, **2c** and **2d** (100 MHz, CDCl_3 -TMS, δ -values)

Proton No.	1a	2c	2d
Me-18	0.67 (s)	0.76 (s)	0.77 (s)
Me-21	0.97 (<i>d</i> , $J = 6$ Hz)	1.01 (<i>d</i> , $J = 6$ Hz)	1.03 (<i>d</i> , $J = 7$ Hz)
Me-19	1.16 (s)	1.31 (s)	1.29 (s)
Me-28	2.03 (s)	2.06 (s)	2.05 (s)
H-27	4.37 (s)	4.38 (s)	4.39 (s)
H-22	4.42 (<i>dt</i> , $J_{22,23} = 3$ Hz, $J_{22,20} = 12$ Hz), 4.46 (<i>dt</i> , $J_{22,23} = 3$ Hz, $J_{22,20} = 12$ Hz)	4.46 (<i>dt</i> , $J_{22,23} = 3$ Hz, $J_{22,20} = 12$ Hz)	4.46 (<i>dt</i> , $J_{22,23} = 3$ Hz, $J_{22,20} = 12$ Hz)
H-2	—	5.82 (<i>dd</i> , $J_{2,3} = 10$ Hz, $J_{2,4\beta} = 2$ Hz)	5.84 (<i>dd</i> , $J_{2,3} = 10$ Hz, $J_{2,4\beta} = 2$ Hz)
H-3	—	6.56 (<i>ddd</i> , $J_{3,2} = 10$ Hz, $J_{3,4\alpha} = 5$ Hz, $J_{3,4\beta} = 2$ Hz)	6.60 (<i>ddd</i> , $J_{3,2} = 10$ Hz, $J_{3,4\alpha} = 5$ Hz, $J_{3,4\beta} = 2$ Hz)
H-4	—	2.40 (<i>m</i>)	2.60 (<i>m</i>)
H-6	—	3.92 (<i>br s</i>)	3.92 (<i>br s</i>)
OMe	—	3.02 (s)	—
OCH_2Me	—	—	1.02 (<i>t</i> , $J = 7$ Hz)
OCH_2Me	—	—	3.14 (<i>q</i> , $J = 7$ Hz)

identical to **2c** confirming the assignment of the structure proposed for this compound.

Compound **2d**, $\text{C}_{30}\text{H}_{44}\text{O}_6$ ($[\text{M}]^+$ at m/z 500) presented in its mass spectrum fragments at m/z 482 $[\text{M} - 18]^+$, 454

$[\text{M} - 46]^+$ and 436 $[\text{M} - 18 - 46]^+$ indicating the presence of an ethoxyl group in a withanolide structure. The ^{13}C NMR and ^1H NMR spectra of compound **2d** were almost identical to those of compound **2c** except that the

Table 1. ^{13}C NMR spectral data of compounds **1a**, **2a**–**2d**, **3a** and **6** (25.2 MHz, CDCl_3 –TMS, δ -values)

Carbon No.	1a	2a	2b	2c	2d	3a	6 (SFORD)
1	212.87	203.04	204.96	203.79	203.80	203.32	200.39 (s)
2	30.34	128.33	128.32	129.28	129.18	129.12	127.28 (d)
3	29.16	142.59	141.47	138.70	138.76	144.22	143.37 (d)
4	35.22	37.57	35.55	27.60	28.22	32.96	65.75 (dd)
5	64.25	81.34	77.23	81.51	81.23	63.23	78.23 (s)
6	60.45	74.09	73.99	68.71	69.26	61.97	66.09 (d)
7	29.83	30.51	29.98	30.01	29.88	29.88	39.02 (t)
8	31.87	33.33	33.30	33.92	34.18	31.14	35.11 (d)
9	42.97	43.33	43.03	43.21	43.09	44.66	45.99 (d)
10	51.94	53.11	51.95	52.50	52.44	48.39	57.29 (s)
11	21.96	23.49	23.17	23.41	23.38	23.59	22.72 (t)
12	39.22	40.22	39.97	40.18	40.04	39.61	39.33 (t)
13	42.69	42.47	41.31	41.20	41.08	42.59	43.15 (s)
14	55.95	56.28	55.51	55.63	55.61	55.85	55.28 (d)
15	24.26	24.38	24.21	24.33	24.32	24.21	23.99 (t)
16	27.27	27.45	27.19	27.34	27.28	27.23	27.34 (t)
17	52.27	55.77	52.06	52.29	52.22	52.00	51.77 (d)
18	11.62	12.39	12.15	12.25	12.24	11.75	11.85 (q)
19	18.36	16.53	15.64	15.76	15.75	15.00	9.91 (q)
20	38.74	39.25	38.86	39.02	38.91	38.76	38.75 (d)
21	13.34	13.40	13.23	13.32	13.31	13.29	13.31 (q)
22	78.76	79.17	78.84	78.90	78.83	78.67	78.62 (d)
23	29.83	30.16	29.84	29.90	28.88	29.88	29.91 (t)
24	152.62	155.43	153.92	152.72	152.68	152.99	153.34 (s)
25	125.58	125.53	125.33	125.72	125.57	125.50	125.56 (s)
26	166.75	167.49	167.10	166.82	166.86	166.76	166.87 (s)
27	57.34	56.29	56.73	57.45	57.44	57.18	56.90 (t)
28	19.98	20.21	20.00	19.93	19.97	19.99	20.04 (q)
OMe	—	—	—	49.71	—	—	—
OCH ₂ Me	—	—	—	—	57.30	—	—
OCH ₂ Me	—	—	—	—	15.61	—	—

methoxyl signal observed for **2c** was replaced by signals from the ethoxyl group in **2d** (see Tables 1 and 2). Again the shielding effect of ring A enone on the methylene group was evident in both spectra. Therefore, the 5α -ethoxy-4,5-dihydrojaborosalactone **B** identity was assigned to compound **2d**. Another 5α -ethoxywithanolide derivative, namely 5α -ethoxy-1-oxo- $6\beta,14\alpha,17\beta,20\alpha$ -tetrahydroxy-(20S,22R)-witha-2,24-dienolide, has been described in the lit. [10].

Table 1 also shows the ^{13}C NMR spectral data of the known jaborosalactones A, D and E which have not been previously reported. It also presents the ^{13}C NMR data for 6α -chloro- 5β -hydroxywithaferin A, previously described in the lit. [11], where we have reassigned the signals for C-10, C-14, C-17 and C-27 based on SFORD experiments.

EXPERIMENTAL

Plant material and isolation procedure. Similar to those previously described [2, 3, 9].

2,3-Dihydrojaborosalactone A (1a). White crystals from EtOAc, mp 180–182°. MS m/z (rel. int.): 456 [M]⁺ (5), 438 [$\text{M} - 18$]⁺ (3), 420 [$\text{M} - 36$]⁺ (5), 315 [$\text{M} - 141$]⁺ (3), 153 [$\text{C}_9\text{H}_{13}\text{O}_2$]⁺ (44), 141 [$\text{C}_7\text{H}_9\text{O}_3$]⁺ (61), 140 [$\text{C}_8\text{H}_{12}\text{O}_2$]⁺ (17), 123 [$\text{C}_7\text{H}_9\text{O}_2$]⁺ (35), 95 [$\text{C}_7\text{H}_9\text{O}_2$]⁺ (23).

5 α -Methoxy-4,5-dihydrojaborosalactone B (2c). Crystals from EtOAc, mp 200–201°. MS m/z (rel. int.): 486 [M]⁺ (4), 468 [$\text{M} - 18$]⁺ (6), 454 [$\text{M} - 32$]⁺ (10), 436 [$\text{M} - 32 - 18$]⁺ (5), 345 [$\text{M} - 141$]⁺ (2), 139 [$\text{C}_8\text{H}_{11}\text{O}_2$]⁺ (10).

5 α -Ethoxy-4,5-dihydrojaborosalactone B (2d). Crystals from EtOAc, mp 203–204°. MS m/z (rel. int.): 500 [M]⁺ (40), 482 [$\text{M} - 18$]⁺ (63), 454 [$\text{M} - 46$]⁺ (19), 436 [$\text{M} - 46 - 18$]⁺ (38), 418 [$\text{M} - 46 - 36$]⁺ (34), 303 [$\text{M} - 197$]⁺ (11), 197 [$\text{C}_{11}\text{H}_{17}\text{O}_3$]⁺ (53), 141 [$\text{C}_7\text{H}_9\text{O}_3$]⁺ (100).

Preparation of 1a from jaborosalactone A (3a). Compound **3a** (10 mg) in dioxane (2 ml) was hydrogenated over PtO₂ (6 mg) at room temp. and atm. pres for 1 hr. The catalyst was filtered off and the residue, obtained by evaporation of the solvent, was purified by RP-HPLC affording a product identical (^1H NMR) to natural 2,3-dihydrojaborosalactone **A** (**1a**).

Preparation of 2c from jaborosalactone A (3a). Compound **3a** (6 mg) in MeOH (4 ml) was treated with 4 M H₂SO₄ (0.03 ml) at room temp., with occasional shaking, for 30 min. It was poured into aq. NaHCO₃ soln and extracted with CH₂Cl₂. The product, obtained by evaporation of the solvent, was identical (^1H and ^{13}C NMR) to compound **2c**.

Acknowledgements—One of us (A.S.V.) thanks CONICET (Argentina) for a fellowship. We are also indebted to Dr. C. A. Catalán (Universidad de Tucumán) for the plant material and the Organization of the American States for financial support.

REFERENCES

1. Nittala, S. S. and Lavie, D. (1981) *Phytochemistry* **20**, 2735.
2. Bukovits, G. J. and Gros, E. G. (1979) *Phytochemistry* **18**, 1237.
3. Bukovits, G. J. and Gros, E. G. (1981) *An. Asoc. Quim. Argent.* **69**, 7.
4. Tschesche, R., Schwang, H. and Legler, G. (1966) *Tetrahedron* **22**, 1121.
5. Tschesche, R., Schwang, H., Fehlhaber, H. W. and Snatzke, G. (1966) *Tetrahedron* **22**, 1129.
6. Tschesche, R., Baumgarth, M. and Welzel, P. (1968) *Tetrahedron* **24**, 5169.
7. Lavie, D., Glotter, E. and Shvo, Y. (1965) *J. Chem. Soc.* 7517.
8. Kupchan, S. M., Anderson, W. K., Bollinger, P., Doskotch, R. W., Smith, R. M., Saenz Renauld, J. A., Schnoes, H. K., Burlingame, A. L. and Smith, D. H. (1969) *J. Org. Chem.* **34**, 3858.
9. Burton, G., Veleiro, A. S. and Gros, E. G. (1982) *J. Chromatogr.* **248**, 472.
10. Vande Velde, V. and Lavie, D. (1981) *Phytochemistry* **20**, 1359.
11. Nittala, S. S., Vande Velde, V., Frolow, F. and Lavie, D. (1981) *Phytochemistry* **20**, 2547.